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Abstract—In this paper, we identify a new form of attack,
called the Balance attack, against proof-of-work blockchain
systems. The novelty of this attack consists of delaying network
communications between multiple subgroups of nodes with bal-
anced mining power. Our theoretical analysis captures the precise
tradeoff between the network delay and the mining power of
the attacker needed to double spend in Ethereum with high
probability.

We quantify our probabilistic analysis with statistics taken
from the R3 consortium, and show that a single machine
needs 20 minutes to attack the consortium. Finally, we run an
Ethereum private chain in a distributed system with similar
settings as R3 to demonstrate the feasibility of the approach,
and discuss the application of the Balance attack to Bitcoin.
Our results clearly confirm that main proof-of-work blockchain
protocols can be badly suited for consortium blockchains.
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I. INTRODUCTION

Blockchain systems are distributed implementations of a

chain of blocks. Each node can issue a cryptographically

signed transaction to transfer digital assets to another node or

can create a new block of transactions, by solving a crypto-

puzzle, and append this block to its current view of the chain.

Due to the distributed nature of this task, multiple nodes may

append distinct blocks at the same index of the chain before

learning about the presence of other blocks, hence leading to

a forked chain or a tree. For nodes to eventually agree on a

unique state of the system, nodes apply a common strategy

that selects a unique branch of blocks in this tree.

Bitcoin [23], one of the most popular blockchain systems,

selects the longest branch. This strategy has however shown

its limitation as it simply wastes all blocks not present in

this branch [9], [27], [29], [15], [25]. If an attacker can

solve crypto-puzzles fast enough to grow a local branch of

the blockchain faster than the rest of the system, then it

will eventually impose its own branch to all participants.

In particular, by delaying the propagation of blocks in the

system, one can increase the amount of wasted blocks and

proportionally slow down the growth of the longest branch of

the system. This delay presents a serious risk to the integrity

of the blockchain, as the attacker does not even need a large

fraction of the computational power to exceed the length of

the chain, allowing her to double spend in new transactions

the coins that she already spent in earlier transactions [28].
Ethereum [32] proposes another selection strategy that

copes with this problem. Each node uses an algorithm, called

GHOST, that starts from the first block, also called the genesis

block, and iteratively selects the root of the heaviest subtree

to construct the common branch. Even if nodes create many

blocks at the same index of the blockchain, their computational

power is not wasted but counted in the selection strategy [29].

In particular, the number of these “sibling” blocks increase the

chance that their common ancestor block be selected in favor

of another candidate block mined by the attacker. Although

it clearly alleviates the Bitcoin limitation discussed above [9],

[27], [15], [25] it remains unclear how long an attacker with a

low mining power should delay messages to discard previous

transactions in Ethereum.
In this paper, we answer this question by demonstrating

theoretically and experimentally that an attacker can compen-

sate a low mining power by delaying selected messages in

Ethereum. To this end, we propose a simple attack, called the

Balance Attack: an attacker transiently disrupts communica-

tions between subgroups of similar mining power. During this

time, the attacker issues transactions in one subgroup, say the

transaction subgroup, and mines blocks in another subgroup,

say the block subgroup, up to the point where the tree of the

block subgroup outweighs, with high probability, the tree of

the transaction subgroup. The novelty of the Balance attack

is to leverage the GHOST protocol that accounts for sibling

or uncle blocks to select a chain of blocks. This strategy

allows the attacker to mine a branch possibility in isolation

of the rest of the network before merging its branch to one

of the competing blockchain to influence the branch selection

process.
We experimented a distributed system running Ethereum

in similar settings as R3, a consortium of more than 70

world-wide financial institutions. In January, R3 consisted

of eleven banks and successfully collaborated in deploying

an Ethereum private chain to perform transactions.1 Since

then, R3 has grown and kept experimenting Ethereum2 and

other technologies while the concept of consortium private

1http://www.ibtimes.co.uk/r3-connects-11-banks-distributed-ledger-using-
ethereum-microsoft-azure-1539044.

2http://www.coindesk.com/r3-ethereum-report-banks/.
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chain gained traction for its ability to offer a blockchain

system among multiple companies in a private and controlled

environment. R3 has just released their own Corda framework.

As opposed to a fully private chain scenario, the consortium

private chain involves different institutions possibly competing

among each other. As they can be located at different places

around the world, they typically use Internet to communicate.

We illustrate the Balance attack in the R3 testbed setting as of

June 2016, by deploying our own private chain on 15 mining

virtual machines in Emulab and configuring the network with

ns-2.
While disrupting the communication between subgroups of

a blockchain system may look difficult, there have been some

attacks successfully delaying messages of Bitcoin in the past.

In 2014, a BGP hijacker exploited access to an ISP to steal

$83000 worth of bitcoins by positioning itself between Bitcoin

pools and their miners [19]. Some known attacks against

Bitcoin involved partitioning the communication graph at the

network level [1] and at the application level [17]. At the

network level, a study indicated the simplicity for autonomous

systems to intercept a large amount of bitcoins and evaluated

the impact of these network attacks on the Bitcoin protocol [1].

At the application level, some work showed that an attacker

controlling 32 IP addresses can “eclipse” a Bitcoin node with

85% probability [17]. More generally, man-in-middle attacks

can lead to similar results by relaying the traffic between two

nodes through the attacker.
One can exploit the Balance attack to violate the persistence

of the main branch, hence rewriting previously committed

transactions, and allowing the attacker to double spend. As

opposed to previous attacks against Bitcoin where the attacker

has to expand the longest chain faster than correct miners to

obtain this result [28], the novelty of our attack lies in the

contribution of the attacker to one of the correct miner chain

in order to outweigh another correct miner chain of Ethereum.

We generalize our contribution to proof-of-work algorithms

by proposing a simple model for proof-of-work blockchains

and specifying Nakamoto’s and GHOST consensus algorithmic

differences. We also discuss how to adapt the Balance attack to

violate the persistence of Bitcoin main branch. This adaptation

requires to mine at the top of one of the correct chains

rather than solo-mining a subchain but can lead to similar

consequences. More precisely, we make the four following

contributions:

1) We show that the GHOST consensus protocol can be

vulnerable to a double spending attack without coali-

tion and with high probability if a single attacker can

delay communication between multiple communication

subgraphs while owning 5% of the total mining power

of the system.

2) We illustrate the problem in the context of the R3

consortium blockchain, as of June 2016, where we

observed 50 nodes among which 15 were mining. We

show that one of the nodes can execute a Balance attack

by disrupting some communication channels less than 4

minutes.

3) We demonstrate a tradeoff between the mining power

needed and the time selected communication channels

have to be delayed to attack Ethereum. This suggests that

combining network-level with application-level attacks

increases the Ethereum vulnerability.

4) We generalize this result to Nakamoto’s protocol and

propose an adaptation of the Balance attack to double

spend in Bitcoin if the attacker can contribute, even with

a small power, by mining on top of some of the correct

chains.

Section II defines the problem. In Section III, we present

the algorithm to run the attack. In Section IV, we show how

the analysis affects GHOST. In Section V, we simulate a

Balance attack in the context of the R3 consortium network.

In Section VI, we present our experiments run in an Ethereum

private chain. In Section VII, we discuss the implications of the

attack in existing blockchain systems. Section VIII presents the

related work. And Section IX concludes. Appendix A includes

the missing proofs for the general case.

II. PRELIMINARIES

In this section we model a simple distributed system as

a communication graph that implements a blockchain ab-

straction as a directed acyclic graph. We propose a high-

level pseudocode representation of proof-of-work blockchain

protocols in this model that allows us to illustrate an important

difference between Bitcoin and Ethereum in the selection of

a main branch with a persistent prefix.

A. A simple distributed model for blockchains

We consider a communication graph G = 〈V,E〉 with

nodes V connected to each other through fixed commu-

nication links E. Nodes are part of a blockchain system

S ∈ {bitcoin, ethereum} and can act as clients by issuing

transactions to the system and/or servers by mining, the action

of trying to combine transactions into a block. For the sake

of simplicity, we consider that each node possesses a single

account and that a transaction issued by node pi is a transfer of

digital assets or coins from the account of the source node pi
to the account of a destination node pj 6= pi. Each transaction

is uniquely identified and broadcast to all nodes in a best-effort

manner. We assume that a node re-issuing the same transfer

multiple times creates as many distinct transactions.

Nodes that mine are called miners. We refer to the computa-

tional power of a miner as its mining power and we denote the

total mining power t as the sum of the mining powers of all

miners in V . Each miner tries to group a set T of transactions it

heard about into a block b ⊇ T as long as transactions of T do

not conflict and that the account balances remain non-negative.

For the sake of simplicity in the presentation, the graph G is

static meaning that no nodes can join and leave the system,

however, nodes may fail as described in Section II-A2.

1) Miner must solve a crypto-puzzle to create a new block:

Miners provably solve a hashcash crypto-puzzle [3] before

creating a new block. Given a global threshold and the block

of largest index the miner knows, the miner repeatedly selects

2



(a) view ℓ1 (b) view ℓ2 (c) view ℓ3 (d) global state ℓ0 =
ℓ1 ∪ ℓ2 ∪ ℓ3

Fig. 1: The global state ℓ0 of a blockchain results from the

union of the distributed local views ℓ1, ℓ2 and ℓ3 of the

blockchain

a nonce and applies a pseudo-random function to this block

and the selected nonce until it obtains a result lower than

the threshold. Upon success the miner creates a block that

contains the successful nounce as a proof-of-work as well as

the hash of the previous block, hence fixing the index of the

block, and broadcasts the block. As there is no known strategy

to solve the crypto-puzzle, the miners simply keep testing

whether randomly chosen numbers solve the crypto-puzzle.

The mining power is thus expressed in the number of hashes

the miner can test per second, or H/s for short. The difficulty

of this crypto-puzzle, defined by the threshold, limits the rate

at which new blocks can be generated by the network. In the

remainder, we refer to d as the difficulty of this crypto-puzzle.

2) The failure model: We assume the presence of an

adversary (or attacker) that can control nodes that together

own a relatively small fraction ρ < 0.5 of the total mining

power of the system. The nodes controlled by the adversary are

called malicious and may not follow the protocol specification,

however, they cannot impersonate other nodes while issuing

transactions.3 A node that is not malicious is correct. We also

assume that the adversary can transiently disrupt communica-

tions on a selected subset of edges E0 of the communication

graph G.

3) The blockchain abstraction: Let the blockchain be a

directed acyclic graph (DAG) ℓ = 〈B,P 〉 such that blocks of

B point to each other with pointers P (pointers are recorded

in a block as a hash of the previous block) and a special block

g ∈ B, called the genesis block, does not point to any block.

Algorithm 1 Blockchain construction at node pi

1: ℓi = 〈Bi, Pi〉, the local blockchain at node pi is a directed acyclic
2: graph of blocks Bi and pointers Pi

3: receive-blocks(〈Bj , Pj〉)i: ✄ upon reception of blocks

4: Bi ← Bi ∪Bj ✄ update vertices of blockchain

5: Pi ← Pi ∪ Pj ✄ update edges of blockchain

Algorithm 1 describes the progressive construction of the

blockchain at a particular node pi upon reception of blocks

from other nodes by simply aggregating the newly received

blocks to the known blocks (lines 3–5). As every added block

3This is typically ensured through public key crypto-systems.

contains a hash to a previous block that eventually leads back

to the genesis block, each block is associated with a fixed

index. By convention we consider the genesis block at index

0, and the blocks at k hops away from the genesis block as

the blocks at index k. As an example, consider the simple

blockchain ℓ1 = 〈B1, P1〉 depicted in Figure 1(a) where B1 =
{g, b1} and P1 = {〈b1, g〉}. The genesis block g has index 0

and the block b1 has index 1.

4) Forks as disagreements on the blocks at a given index:

As depicted by views ℓ1, ℓ2 and ℓ3 in Figures 1(a), 1(b)

and 1(c), respectively, nodes may have a different views of

the current state of the blockchain. In particular, it is possible

for two miners p1 and p2 to mine almost simultaneously two

different blocks, say b1 and b2. If neither block b1 nor b2
was propagated early enough to nodes p2 and p1, respectively,

then both blocks would point to the same previous block g as

depicted in Figures 1(a) and 1(b). Because network delays are

not predictable, a third node p3 may receive the block b1 and

mine a new block without hearing about b2. The three nodes

p1, p2 and p3 thus end up having three different local views of

the same blockchain, denoted ℓ1 = 〈B1, P1〉, ℓ2 = 〈B2, P2〉
and ℓ3 = 〈B3, P3〉.

We refer to the global blockchain as the directed acyclic

graph ℓ0 = 〈B0, P0〉 representing the union of these local

blockchain views, denoted by ℓ1∪ℓ2∪ℓ3 for short, as depicted

in Figure 1, and more formally defined as follows:
{

B0 = ∪∀iBi,
P0 = ∪∀iPi.

The point where distinct blocks of the global blockchain DAG

have the same predecessor block is called a fork. As an

example Figure 1(d) depicts a fork with two branches pointing

to the same block: g in this example.

In the remainder of this paper, we refer to the DAG as a

tree rooted in g with upward pointers, where children blocks

point to their parent block.

5) Main branch in Bitcoin and Ethereum: To resolve the

forks and define a deterministic state agreed upon by all nodes,

a blockchain system must select a main branch, as a unique se-

quence of blocks, based on the tree. Building upon the generic

construction (Alg. 1), we present two selections: Nakamoto’s

consensus protocol (Alg. 2) present in Bitcoin [23] and the

GHOST consensus protocol (Alg. 3) present in Ethereum [32].

a) Nakamoto’s consensus algorithm: The difficulty of

the crypto-puzzles used in Bitcoin produces a block every 10

minutes in expectation. The advantage of this long period, is

that it is relatively rare for the blockchain to fork because

blocks are rarely mined during the time others are propagated

to the rest of the nodes.

Algorithm 2 depicts the Bitcoin-specific pseudocode that

includes Nakamoto’s consensus protocol to decide on a partic-

ular block at index i (lines 8–18) and the choice of parameter

m (line 6) explained later in Section II-B. When a fork occurs,

Nakamoto’s protocol resolves it by selecting the deepest

branch as the main branch (lines 8–15) by iteratively selecting

the root of the deepest subtree (line 11). When process pi is

3



Algorithm 2 Nakamoto’s consensus protocol at node pi

6: m = 5, the number of blocks to be appended after the block containing
7: tx , for tx to be committed in Bitcoin

8: get-main-branch()i: ✄ select the longest branch

9: b← genesis-block(Bi) ✄ start from the blockchain root

10: while b.children 6= ∅ do ✄ prune shortest branches

11: block ← argmaxc∈b.children{depth(c)} ✄ root of deepest subtree

12: B ← B ∪ {block} ✄ update vertices of main branch

13: P ← P ∪ {〈block , b〉} ✄ update edges of main branch

14: b← block ✄ move to next block

15: return 〈B,P 〉 ✄ returning the Bitcoin main branch

16: depth(b)i: ✄ depth of tree rooted in b

17: if b.children = ∅ then return 1 ✄ stop at leaves

18: else return 1 + maxc∈b.children depth(c) ✄ recurse at children

done with this pruning, the resulting branch becomes the main

branch 〈Bi, Pi〉 as observed by the local process pi. Note that

the pseudocode for checking whether a block is decided and a

transaction committed based on this parameter m is common

to Bitcoin and Ethereum, it is thus deferred to Alg. 4.

6) The GHOST consensus algorithm: As opposed to the

Bitcoin protocol, Ethereum generates one block every 12–15

seconds. While it improves the throughput (transactions per

second) it also favors transient forks as miners are more likely

to propose new blocks without having heard about the latest

mined blocks yet. To avoid wasting large mining efforts while

resolving forks, Ethereum uses the GHOST (Greedy Heaviest

Observed Subtree) consensus algorithm that accounts for the,

so called uncles, blocks of discarded branches. In contrast with

Nakamoto’s protocol, the GHOST protocol iteratively selects,

as the successor block, the root of the subtree that contains

the largest number of nodes (cf. Algorithm 3).

Fig. 2: Nakamoto’s consensus protocol at the heart of

Bitcoin selects the main branch as the deepest branch (in

black) whereas the GHOST consensus protocol at the heart of

Ethereum follows the heaviest subtree (in grey)

The main difference between Nakamoto’s consensus pro-

tocol and GHOST is depicted in Figure 2, where the black

blocks represent the main branch selected by Nakamoto’s

consensus protocol and the grey blocks represent the main

branch selected by GHOST.

Algorithm 3 The GHOST consensus protocol at node pi

6: m = 11, the number of blocks to be appended after the block containing
7: tx , for tx to be committed in Ethereum (since Homestead v1.3.5)

8: get-main-branch()i: ✄ select the branch with the most nodes

9: b← genesis-block(Bi) ✄ start from the blockchain root

10: while b.children 6= ∅ do ✄ prune lightest branches

11: block ← argmaxc∈b.children{num-desc(c)} ✄ root of heaviest tree

12: B ← B ∪ {block} ✄ update vertices of main branch

13: P ← P ∪ {〈block , b〉} ✄ update edges of main branch

14: b← block ✄ move to next block

15: return 〈B,P 〉. ✄ returning the Ethereum main branch

16: num-desc(b)i: ✄ number of nodes in tree rooted in b

17: if b.children = ∅ then return 1 ✄ stop at leaves

18: else return 1 +
∑

c∈b.children num-desc(c) ✄ recurse at children

B. Decided blocks and committed transactions

A blockchain system S must define when the block at an

index is agreed upon. To this end, it has to define a point

in its execution where a prefix of the main branch can be

“reasonably” considered as persistent.4 More precisely, there

must exist a parameter m provided by S for an application to

consider a block as decided and its transactions as committed.

This parameter is typically mbitcoin = 5 in Bitcoin (Alg. 2,

line 6) and methereum = 11 in Ethereum (Alg. 3, line 6).

Definition 1 (Transaction commit). Let ℓi = 〈Bi, Pi〉 be the

blockchain view at node pi in system S. For a transaction tx

to be locally committed at pi, the conjunction of the following

properties must hold in pi’s view ℓi:

1) Transaction tx has to be in a block b0 ∈ Bi of the main

branch of system S. Formally, tx ∈ b0 ∧ b0 ∈ B′
i : ci =

〈B′
i, P

′
i 〉 = get-main-branch()i.

2) There should be a subsequence of m blocks b1, ..., bm
appended after block b. Formally, ∃b1, ..., bm ∈ Bi :
〈b1, b0〉, 〈b2, b1〉, ..., 〈bm, bm−1〉 ∈ Pi. (In short, we say

that b0 is decided.)

A transaction tx is committed if there exists a node pi such

that tx is locally committed.

Property (1) is needed because nodes eventually agree on

the main branch that defines the current state of accounts

in the system—blocks that are not part of the main branch

are ignored. Property (2) is necessary to guarantee that the

blocks and transactions currently in the main branch will

persist and remain in the main branch. Before these additional

blocks are created, nodes may not have reached consensus

regarding the unique blocks b at index j in the chain. This

is illustrated by the fork of Figure 1 where nodes consider,

respectively, the pointer 〈b1, g〉 and the pointer 〈b2, g〉 in their

local blockchain view. By waiting for m blocks were m is

given by the blockchain system, the system guarantees with a

reasonably high probability that nodes will agree on the same

block b.

4In theory, there cannot be consensus on a block at a partiular index [13],
hence preventing persistence, however, applications have successfully used
Ethereum to transfer digital assets based on parameter methereum = 11 [24].
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Algorithm 4 Checking transaction commit at node pi

19: is-committed(tx)i: ✄ check whether transaction is committed

20: 〈B′
i, P

′
i 〉 ← get-main-branch() ✄ pick main branch with Alg. 2 or 3

21: if ∃b0 ∈ B′
i : tx ∈ b0 ∧ ∃b1, ..., bm ∈ Bi : ✄ tx in main branch

22: 〈b1, b0〉, 〈b2, b1〉..., 〈bm, bm−1〉 ∈ Pi then ✄ enough blocks

23: return true
24: else return false

For example, consider a fictive blockchain system with

mfictive = 2 that selects the heaviest branch (Alg. 3, lines 8–

15) as its main branch. If the blockchain state was the one

depicted in Figure 2, then blocks b2 and b5 would be decided

and all their transactions would be committed. This is because

they are both part of the main branch and they are followed by

at least 2 blocks, b8 and b13. (Note that we omit the genesis

block as it is always considered decided but does not include

any transaction.)

III. THE BALANCE ATTACK

In this section, we present the Balance attack, a novel form

of attacks that affect proof-of-work blockchains, especially

Ethereum. Its novelty lies in identifying subgroups of miners

of equivalent mining power and delaying messages between

them rather than entering a race to mine blocks faster than

others.

The balance attack demonstrates a fundamental limitation of

main proof-of-work systems in that they are block oblivious.

Definition 2 (Block Obliviousness). A blockchain system is

block oblivious if an attacker can:

1) make the recipient of a transaction tx observe that tx

is committed and

2) later remove the transaction tx from the main branch,

with a probability 1− ε, where ε is a small constant.

The balance attack is simple: after the attacker introduces a

delay between correct subgroups of equivalent mining power,

it simply issues transactions in one subgroup. The attacker

then mines sufficiently many blocks in another subgroup

to ensure with high probability that the subtree of another

subgroup outweighs the transaction subgroup’s. Even though

the transactions are committed, the attacker can rewrite with

high probability the blocks that contain these transactions by

outweighing the subtree containing this transaction.

Note that one could benefit from delaying messages only be-

tween the merchant and the rest of the network by applying the

eclipse attack [17] to Ethereum. Eclipsing one node of Bitcoin

appeared, however, sufficiently difficult: it requires to restart

the node’s protocol in order to control all the logical neighbors

the node will eventually try to connect to. While a Bitcoin

node typically connects to 8 logical neighbors, an Ethereum

node typically connects to 25 nodes, making the problem

even harder. Another option would be to isolate a subgroup

of smaller mining power than another subgroup, however, it

would make the attack only possible if the recipients of the

transactions are located in the subgroup of smaller mining

power. Although possible this would limit the generality of

(a) Example of the selection of
edges E0 delayed between k = 2
subgraphs of 25 units of mining
power each

(b) Example of the selection of edges
E0 delayed between k = 4 subgraphs
of 12 units of mining power each

Fig. 3: Two decompositions of communication graphs into

subgraphs by an attacker where E0 represents the cut of

communication edges linking the subgraphs

the attack, because the attacker would be constrained on the

transactions it can override.

Note that the Balance Attack inherently violates the per-

sistence of the main branch prefix and is enough for the

attacker to double spend. The attacker has simply to identify

the subgroup that contains merchants and create transactions

to buy goods from these merchants. After that, it can issue

the transactions to this subgroup while propagating its mined

blocks to at least one of the other subgroups. Once the

merchant shipped goods, the attacker stops delaying messages.

Based on the high probability that the tree seen by the

merchant is outweighed by another subtree, the attacker could

reissue another transaction transferring the exact same coin

again.

A. Executing a Balance Attack

For the sake of simplicity, let us fix k = 2 and postpone

the general analysis for any k ≥ 2 to Appendix A. We

consider subgraphs G1 = 〈V1, E1〉 and G2 = 〈V2, E2〉 of

the communication graph G = 〈V,E〉 so that each subgraph

has half of the mining power of the system as depicted in

Figure 3(a) whereas Figure 3(a) illustrates the variant when

k = 4. Let E0 = E \ (E1 ∪ E2) be the set of edges that

connects nodes of V1 to nodes of V2 in the original graph G.

Let τ be the communication delay introduced by the attacker

on the edges of E0.

As indicated in Algorithm 5, the attacker can introduce a

sufficiently long delay τ during which the miners of G1 mine

in isolation of the miners of G2 (line 13). As a consequence,

different transactions get committed in different series of

blocks on the two blockchains locally viewed by the subgraphs

G1 and G2. Let b2 be a block present only in the blockchain

viewed by G2 but absent from the blockchain viewed by G1. In

the meantime, the attacker issues transactions spending coins

C in G1 (line 14) and mines a blockchain starting from the

5



Algorithm 5 The Balance Attack initiated by attacker pi

1: State:

2: G = 〈V,E〉, the communication graph
3: pow, a mapping from of a node in V to its mining power in R

4: ℓi = 〈Bi, Pi〉, the local blockchain at node pi is a directed acyclic
5: graph of blocks Bi and pointers Pi

6: ρ ∈ (0; 1), the portion of the mining power of the system owned by
7: the attacker pi, typically ρ < 0.5
8: d, the difficulty of the crypto-puzzle currently used by the system

9: balance-attack(〈V,E〉)i: ✄ starts the attack

10: Select k ≥ 2 subgraphs G1 = 〈V1, E1〉, ..., Gk = 〈Vk, Ek〉:
11:

∑
∀v∈V1

pow(v) ≈ ... ≈
∑

∀v′∈Vk
pow(v′)

12: Let E0 = E \ ∪∀0<i≤kEi ✄ attack communication channels

13: Stop communications on E0 during τ ≥
(1−ρ)6d log( 4

ε
)

4ρ2t
seconds

14: Issue transaction tx crediting a merchant in graph Gi with coins C
15: Let b2 be a block appearing in Gj but not in Gi

16: Start mining on ℓi immediately after b2 ✄ contributed to correct chain

17: Send blockchain view ℓi to some subgraph Gj where j 6= i
18: When τ seconds have elapsed, stop delaying communications on E0

19: Issue transaction tx
′ that double spends coins C

block b2 (line 16). Before the delay expires the attacker sends

his blockchain to G2. After the delay expires, the two local

views of the blockchain are exchanged. Once the heaviest

branch that the attacker contributed to is adopted, the attacker

can simply reuse the coins C in new transactions (line 19).

B. The knowledge about the network

As indicated by the state of Algorithm 5, an attacker has to

be knowledgeable about the current settings of the blockchain

system to execute a Balance attack. In fact, the attacker must

have information regarding the logical or physical communica-

tion graph, the mining power of the miners or pools of miners

and the current difficulty of the crypto-puzzle. In particular,

this information is needed to delay messages for long enough

between selected communication subgraphs. As we will show

in the next section, this delay can be overestimated, however,

underestimating it may make the attack impossible.

The information regarding the mining power and the diffi-

culty of nodes is generally public information and can often be

retrieved online. In particular, we got provided an access to the

R3 Ethereum network statistics http://r3n1-utils.gcl.r3cev.com/

that included block propagation delays, the list of connected

nodes and their individual mining power, the version of

their Ethereum client as well as the current difficulty of

the crypto-puzzle. The same statistical information regarding

the Ethereum public chain is publicly available online at

https://ethstats.net/.

It is more difficult, however, to gather information regarding

the communication network. Note that some tools exist to

retrieve information regarding the communication topology of

blockchain systems. The interesting aspects of the Balance

attack is that it can apply to the logical overlay used by

the peer-to-peer network of the blockchain system or to

the physical overlay. While there exist tools to retrieve the

logical overlay topology, like AddressProbe [21] to find some

information regarding the peer-to-peer overlay of Bitcoin, it

can be easier for an attacker of Ethereum to run a DNS

poisoinning or a denial-of-service attack rather than a BGP

hijacking [19], [1] that requires access to autonomous systems.

IV. VULNERABILITY OF THE GHOST PROTOCOL

In this Section, we show that the Balance attack makes a

blockchain system based on GHOST (depicted in Alg. 3) block

oblivious. A malicious user can issue a Balance attack with

less than half of the mining power by delaying the network.

Let us first summarize previous and new notations in Table I.

t total mining power of the system (in million hashes per second, MH/s)
d difficulty of the crypto-puzzle (in million hashes, MH)
ρ fraction of the mining power owned by the malicious miner (in percent, %)
k the number of communication subgraphs
τ time during which communication between subgraphs is disrupted (in seconds, s)

µc mean of the number of blocks mined by each communication subgraph during τ
µm mean of the number of blocks mined by the attacker during time τ
∆ the maximum difference of mined blocks for the two subgraphs

TABLE I: Notations of the analysis

For the sake of simplicity in the proof, we assume that

k = 2 and
∑

∀v∈V1
pow(v) =

∑

∀v′∈V2
pow(v′) so that the

communication is delayed between only two communication

subgraphs of equal mining power. We defer the proof for the

general case where k ≥ 2 to Appendix A.

As there is no better strategy for solving the crypto-puzzles

than random trials, we consider that subgraphs G1 and G2

mine blocks during delay τ . During that time, each of G1

and G2 performs a series of n = 1−ρ
k

tτ independent and

identically distributed Bernoulli trials that returns one in case

of success with probability p = 1
d

and 0 otherwise. Let

the sum of these outcomes for subgraphs G1 and G2 be

the random variables X1 and X2, respectively, each with a

binomial distribution and mean:

µc = np =
(1− ρ)tτ

2d
. (1)

Similarly, the mean of the number of blocks mined by the

malicious miner during time τ is

µm =
ρtτ

d
.

From line 13 of Alg. 5, we know that τ ≥
(1−ρ)6d log( 4

ε
)

4ρ2t

which leads to:

τ ≥
(1− ρ)6d log( 4

ε
)

4ρ2t
,

(1− ρ)tτ

2d
≥

3(1− ρ)2 log( 4
ε
)

4ρ2
.

6

http://r3n1-utils.gcl.r3cev.com/
https://ethstats.net/


Fig. 4: The mining power of the R3 Ethereum network as reported by eth-netstats as of June 2016

By Eq. 4 we have:

µc ≥
3(1− ρ)2 log( 4

ε
)

4ρ2
,

4ρ2µc

3(1− ρ)2
≥ log

(

4

ε

)

,

−
4ρ2µc

3(1− ρ)2
≤ log

(ε

4

)

,

e
−

4ρ2µc
3(1−ρ)2 ≤

ε

4
,

1− 4e
−

4ρ2µc
3(1−ρ)2 ≥ 1− ε. (2)

The attack relies on minimizing the difference in mined

blocks between any pair of communication subgraphs.

Lemma 3. After the communication is re-enabled, the expec-

tation of the number of blocks mined by the attacker is greater

than the difference ∆ = |X1 − X2| of the number of blocks

mined on the two subgraphs G1 and G2, with probability 1−ε.

Proof: The communication is re-enabled at line 18 of

Alg. 5. At this point in the execution, the probability that the

numbers of blocks mined by each subgraph are within a ±δ
factor from their mean, is bound for 0 < δ < 1 and i ∈ {1, 2}
by Chernoff bounds [22]:

{

Pr [Xi ≥ (1 + δ)µc] ≤ e−
δ2

3 µc ,

Pr [Xi ≤ (1− δ)µc] ≤ e−
δ2

2 µc .

Thus, we have

Pr[|Xi − µc| < δµc] > 1− 2e−
δ2

3 µc .

Observe that the probability that these two random variables

are both within a ±δµc is lower than the probability that their

difference ∆ is upper-bounded by 2δµc:

(Pr [|Xi − µc| < δµc])
2
≤ Pr[∆ < 2δµc].

Thus, we obtain:

Pr[∆ < 2δµc] >
(

1− 2e−
δ2

3 µc

)2

. (3)

As µc ≥ 0, we have that:

−
δ2

3
µc ≤ 0,

−e
−δ2

3 µc ≥ −1,

and we can apply the Bernoulli inequality to Eq. 3:

Pr[∆ < 2δµc] > 1− 4e−
δ2

3 µc .

If we replace δ by 2ρ
1−ρ

, we obtain:

Pr[∆ < µm] > 1− 4e
−

4ρ2µc
3(1−ρ)2 .

By Eq. 2, we can see that the expectation of the number of

blocks mined by the attacker is strictly greater than ∆ with

high probability:

Pr[∆ < µm] > 1− ε.

Theorem 4. A blockchain system that selects a main branch

based on the GHOST protocol (Alg. 3) is block oblivious.

Proof: By lines 17–18 of Alg. 3, we know that GHOST

counts every mined blocks to compute the weight of a subtree,

and to select one blockchain view and discard the other.

Since the expected number of blocks mined by the attacker

is greater than the difference ∆ with probability 1−ε, we know

that when the timer expires at line 18 of Alg. 5, the attacker

will make the system discard the blockchain view of either G1

or G2 by sending its blockchain view to the other subgraph,

hence making the blockchain system block oblivious.

V. ANALYSIS OF THE R3 TESTBED

The statistics of the R3 testbed were gathered through the

eth-netstat applications at the end of June 2016.5 R3 is a

consortium of more than 50 banks that has tested blockchain

systems and in particular Ethereum in a consortium private

chain context over 2016.6 As depicted in Figure 4, the network

consisted at that time of |V | = 50 nodes among which only

15 were mining. The mining power of the system was about

20MH/s and the most powerful miner mines at 2.4 MH/s or

12% of the total mining power while the difficulty of the

crypto-puzzle was observed close to 30 MH.

We assume that the attacker selects communication edges

E0 between two subgraphs G1 and G2 so that their mining

power is 8.8MH/s each. The probability p of solving the

crypto-puzzle per hash tested is 1
30×106 so that the mean is

5http://r3n1-utils.gcl.r3cev.com/.
6http://www.coindesk.com/r3-ethereum-report-banks
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Number of nodes 50
Number of miners 15

Total mining power (MH/s) 20
Mining power of the most powerful miner (MH/s) 2.4

Difficulty (MH) 30

TABLE II: The R3 settings used in the analysis

µc = np = 95.3 if we wait for 19 minutes and 40 seconds.

The attacker creates, in expectation, a block every 30
2.4 = 12.5

seconds or ⌊ 1180
12.5 ⌋ = 94 blocks during the 19 minutes and

40 seconds. Hence let us select δ such that the attacker has

a chance to mine more than 2δµc blocks during that period,

i.e., 94 = 2δµc+1 implying that δ = 0.1343. The probability

of the difference exceeding 94 is upper bounded by 4e−
δ2

3 µc

leading to a bound of 49.86%.

To conclude a single miner of the R3 testbed needs to delay

edges of E0 during less than 20 minutes to execute a Balance

attack and discards blocks that were previously decided (even

if m = 18 was chosen) with a chance of success greater than
1
2 .

A. Tradeoff between communication delays and mining power

Malicious nodes may have an incentive to form a coalition

in order to exploit the Balance attack to double spend. In

this case, it is easier for the malicious nodes to control a

larger portion of the mining power of the system, hence such

a coalition would not need to delay messages as long as in

our example of Section V. For simplicity, we again consider

the case where the attacker delay messages between k = 2
communication subgraphs.

To illustrate the tradeoff between communication delay and

the portion of the mining power controlled by the attacker,

we consider the R3 testbed with a 30 MH total difficulty, a

20 MH/s total mining power and plot the probability as the

communication delay increases for different portions of the

mining power controlled by the adversary. Figure 5 depicts

this result. As expected, the probability increases exponentially

fast as the delay increases, and the higher the portion of the

mining power is controlled by the adversary the faster the

probability increases. In particular, in order to issue a balance

attack with 90% probability, 51 minutes are needed for an

adversary controlling 12% of the total mining power whereas

only 11 minutes are sufficient for an adversary who controls

20% of the mining power.

B. Tradeoff between communication delays and difficulties

Another interesting aspect of proof-of-work blockchain is

the difficulty parameter d. As already mentioned, this param-

eter impacts the expected time it takes for a miner to succeed

in solving the crypto-puzzle. When setting up a private chain,

one has to choose a difficulty to make sure the miners would

mine at a desirable pace. A too high difficulty reduces the

throughput of the system without requiring leader election [10]

or consensus sharding [20]. A too low difficulty increases the

probability for two correct miners to solve the crypto-puzzle

Fig. 5: Probability of Balance attack in the R3 testbed as the

communication delay increases for different portions of the

mining power controlled by the attacker

before one can propagate the block to the other, a problem of

Bitcoin that motivated the GHOST protocol [29].

Fig. 6: Probability of Balance attack in the R3 testbed (with

20 MH/s of total mining power, 12% of the mining power at

the attacker) for different difficulties as the communication

delay increases

Figure 6 depicts the probability of the Blockchain anomaly

when the communication delay increases for different difficul-

ties without considering the time for a block to be decided.

Again, we consider the R3 Ethereum network with a total

mining power of 30 MH/s and an attacker owning ρ = 12%
of this mining power and delaying communications between

k = 2 subgraphs of half of the remaining mining power

( 1−ρ
2 = 44%) each. The curve labelled 4 KH indicates a

difficulty of 4000 hashes, which is also the difficulty chosen

by default by Ethereum when setting up a new private chain

system. This difficulty is dynamically adjusted by Ethereum

at runtime to keep the mining block duration constant in
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Fig. 7: The topology of our experiment involving 15 miners

with subgraph G1 including the attacker depicted in black

and subgraph G2 depicted in grey

expectation, however, this adaptation is dependent on the

visible mining power of the system. The curve labelled 30 MH

indicates the probability for the difficulty observed in the

R3 Ethereum network. We can clearly see that the difficulty

impacts the probability of the Balance attack. This can be

explained by the fact that the deviation of the random variables

X1, ..., Xk from their mean µc is bounded for sufficiently large

number of mined blocks.

VI. EXPERIMENTING THE BALANCE ATTACK ON AN

ETHEREUM PRIVATE CHAIN

In this section, we experimentally produce the attack on an

Ethereum private chain involving up to 18 physical distributed

machines. To this end, we configure a realistic network with 15

machines dedicated to mining as in the R3 Ethereum network

we described in Section V and 3 dedicated network switches.

All experiments were run on 18 physical machines of the

Emulab environment where a network topology was con-

figured using ns/2 as depicted in Figure 7. The topology

consists of three local area networks configured through a ns/2

configuration file with 20 ms latency and 100 Mbps bandwidth.

All miners run the geth Ethereum client v.1.3.6 and the

initial difficulty of the crypto-puzzle is set to 40 KH. The

communication graph comprises the subgraph G1 of 8 miners

that includes the attacker and 7 correct miners and a subgraph

G2 of 7 correct miners.

A. Favoring one blockchain view over another

We run our first experiment during 2 minutes. We delayed

the link E0 during 60 seconds so that both subgraphs mine

in isolation from each other during that time and end up with

distinct blockchain views. After the delay we take a snapshot,

at time t1, of the blocks mined by each subgraphs and the

two subgraphs start exchanging information normally leading

to a consensus regarding the current state of the blockchain.

At the end of the experiment, after 2 minutes we take another

snapshot t2 of the blocks mined by each subgraph.

Table III lists the prefix of the hashes of blocks (excluding

uncles) of the blockchain views of G1 and G2 at times t1,

while the two subgraphs did not exchange their view, and at

time t2, after the subgraphs exchanged their blocks. Note that

TABLE III: Hash prefixes of the blocks of the main branch

(excluding uncles) selected by the subgraphs G1 and G2; the

blocks of G2 at time t1 do no longer appear at time t2

we did not represent the uncle blocks to focus on the main

branches. We observe that the blockchain view of the subgraph

G1 was adopted as the valid chain while the other blockchain

view of the subgraph G2 was not. For example, one of the

listed blocks viewed by G1 at time t1 whose hash starts with

0xfab2 appears as well in the final blockchain at time t2.

More generally, we can see that only blocks of the blockchain

view of G1 at time t1 were finally adopted at time t2 as part

of the blocks of the global view of the blockchain. All the

blocks of G2 at time t1 were discarded from the blockchain

by time t2.

B. Blocks mined by an attacker and two subgraphs

We now report the total number of blocks mined, especially

focusing on the creation of uncle blocks. More precisely, we

compare the number of blocks mined by the attacker against

the difference of the number of blocks ∆ mined by each

subgraph. We know from the analysis that it is sufficient for
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Fig. 8: The total number of blocks (including uncles) mined

by the attacker and the difference ∆ in the total number of

blocks (including uncles) mined by the two subgraphs G1

and G2 (error bars indicate minimum and maximum

observed over 10 runs)

the attacker to mine at least ∆ + 1 blocks in order to be

able to discard one of the k blockchain views, allowing for

double spending. The experiment is similar to the previous

experiment in that we also used Emulab with the same ns/2

topology, however, we did not introduce delays and averaged

results over 10 runs of 4 minutes each.

Figure 8 depicts the minimum, maximum and average

blocks obtained over the 10 runs. The vertical bars indicate

minimum and maximum. First, we can observe that the

average difference ∆ is usually close to its minimum value

observed during the 10 runs. This is due to having a similar

total number of blocks mined by each subgraph in most cases

with few rare cases where the difference is larger. As we

can see, the total number of blocks (including uncles) mined

during the experiment by the attacker is way larger than the

difference in blocks ∆ mined by the two subgraphs. This

explains the success of the Balance attack as was observed

in Section VI-A.

C. The role of uncle blocks in Ethereum

In the previous experiment, we focused on the total number

of blocks without differentiating the blocks that are adopted

in the main branch and the uncle blocks that are only part of

the local blockchain views. The GHOST protocol accounts for

these uncle blocks to decide the current state of the blockchain

as we explained previously in Section II.

Figure 9 indicates the number of uncle blocks in comparison

to the blocks accepted on the current state of the blockchain

for subgraphs G1 and G2, and the attacker (referred to as

‘Malicious’). As expected, we can observe that the malicious

node does not produce any uncle block because he mines

Fig. 9: The total number of blocks (including uncles and

non-uncles) mined by the attacker and the two subgraphs G1

and G2

Fig. 10: The depth of the blockchains mined by the attacker

and two subgraphs G1 and G2

the block in isolation of the rest of the network, successfully

appending each mined block consecutively to the latest block

of its current blockchain view. We note several uncle blocks in

the subgraphs, as correct miners may mine blocks concurrently

at the same indices.

Figure 10 depicts the creation of the number of mined

blocks (excluding uncle blocks) over time for subgraphs G1

and G2, and the attacker (referred to as ‘Malicious’). As we

can see the difference between the number of blocks mined

on the subgraphs is significantly smaller than the number of

blocks mined by the attacker. This explains why the Balance

attack was observed in this setting.

D. Relating connectivity to known blocks

Figure 11 illustrates the execution of two subgraphs resolv-

ing connectivity issues and adopting a chain. This experiment

outlines one of the fundamental aspects of the balance attack,

in which the chosen subgraph resolves the network delay and

attempts reconnection with another subgraph. At this point,

the subgraphs will initiate the consensus protocol and select
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Fig. 11: Execution where the attacker in G1 delays the

communication between G1 and G2 for one minute

the branch to adopt as the main branch. The experiment was

set up with two subgraphs G1 and G2 where |V1| = |V2| = 7.

The attacker selects a subgraph and delays messages between

this subgraph and another, enforcing an isolated mining en-

vironment. Once the delay is set, the attacker joins one of

the subgraphs and begins to mine onto the current chain. The

attacker then delays the messages until there is a sufficient

amount of blocks mined onto the isolated blockchain for it

to be adopted as the correct chain by the other subgraph. In

this experiment, at t = 60 s, the delay between subgraphs

is resolved, and the subgraphs maintain a connection. Upon

reconnection, the subgraphs invoke the consensus protocol

to select and adopt the correct chain. In this case, using

the GHOST protocol, the heaviest chain is selected for both

subgraphs, meaning the chain mined by G1 is chosen, to which

the attacker contributed.

This result reveals that the adoption of a chosen blockchain

is plausible, given that the attacker is able to sufficiently delay

messages between subgraphs.

VII. APPLICATION TO NAKAMOTO’S CONSENSUS

PROTOCOL

Although the GHOST protocol was shown to be less vul-

nerable to message delays than Nakamoto’s consensus pro-

tocol [29], it is interesting to note that our analysis can be

extended to Nakamoto’s consensus protocol. As described in

Section II, Nakamoto’s consensus protocol differs from the

GHOST protocol in the way a node chooses the current state of

the blockchain in case of forks. We present below an intuition

of the proof that the Bitcoin is vulnerable to the Balance attack.

As noted previously [29], [27] Nakamoto’s protocol suffers

from delays for the following reasons. Let us assume that p
pools of miners mine p concurrent blocks at the same time in

Bitcoin. Assuming that all these mining pools share the same

view of the blockchain with only a genesis block when this

occurs, then all mining pools update their local blockchain

view with a new block at index 1 that differs from one

pool to another. Finally, all miners exchange their blockchain

view and selects one of these views as the current state of

the blockchain. Consider that the process repeats for the f th

time, where miners mine concurrently, now at index f , and

exchange the blockchain view. At each iteration of the process,

the chain depth increases by 1 while the number of blocks

mined effectively by the correct miners is p leading to a final

blockchain of depth f while the number of mined blocks is fp.

Intuitively, this means that for an external attacker to be able

to make the system discard a particular chain, the attacker

simply needs to have slightly more than a pth of the total

mining power or the other miners to have a chance to mine a

longer chain than the other miners.

Theorem 5. A blockchain system that selects a main branch

based on Nakamoto’s protocol (Alg. 2) is block oblivious.

To show that the same result holds for Bitcoin, we need

to slightly change the Balance attack. While in Ethereum it

was sufficient for the attacker to mine on any branch of the

blockchain view of Gj after the block b2 (Alg. 5, line 15), in

Bitcoin the attacker has to mine at the top of the blockchain

view of Gj . By doing so, the attacker increases the length of

the Nakamoto’s main branch in graph Gj . Considering that

each correct miner mines at the top of the longest branch

of their subgroup with the same probability π, the mean of

the number of blocks added to the main chain will become

µbitcoin
c = (1−ρ)tτ

2dπ . We can then define two binomial random

variables X ′
i and X ′

j for the expected number of blocks in

the main branch of Gi and Gj , respectively, and apply the

reasoning of the proof of Lemma 3.

VIII. RELATED WORK

Traditional attacks against Bitcoin consist of waiting for

some external action, like shipping goods, in response to a

transaction before discarding the transaction from the main

branch. As the transaction is revoked, the issuer of the

transaction can reuse the coins of the transaction in another

transaction. As the side effects of the external action cannot

be revoked, the second transaction appears as a “double

spending”.

Perhaps the most basic form of such an attack assumes that

an application takes an external action as soon as a transaction

is included in a block [12], [18], [2]. The first attack of this

kind is called Finney’s attack and consists of solo-mining a

block with a transaction that sends coins to itself without

broadcasting it before issuing a transaction that double-spends

the same coin to a merchant. When the goods are delivered

in exchange of the coins, the attacker broadcasts its block to

override the payment of the merchant. The vector76 attack [30]

consists of an attacker solo-mining after block b0 a new block

b1 containing a transaction to a merchant to purchase goods.

Once another block b′1 is mined after b0, the attacker quickly

sends b1 to the merchant for an external action to be taken.

If b′1 is accepted by the system, the attacker can issue another

transaction with the coins spent in the discarded block b1.

The attacks become harder if the external action is taken af-

ter the transaction is committed by the blockchain. Rosenfeld’s

11



attack [28] consists of issuing a transaction to a merchant. The

attacker then starts solo-mining a longer branch while waiting

for m blocks to be appended so that the merchant takes an

external action in response to the commit. The attack success

probability depends on the number m of blocks the merchant

waits before taking an external action and the attacker mining

power. However, when the attacker has more mining power

than the rest of the system, the attack, also called majority

hashrate attack or 51-percent attack, is guaranteed successful,

regardless of the value m. To make the attack successful when

the attacker owns only a quarter of the mining power, the

attacker can incentivize other miners to form a coalition [11]

until the coalition owns more than half of the total mining

power.

Without a quarter of the mining power, discarding a com-

mitted transaction in Bitcoin requires additional power, like

the control over the network. It is well known that delaying

network messages can impact Bitcoin [9], [27], [29], [15],

[25]. Decker and Wattenhoffer already observed that Bitcoin

suffered from block propagation delays [9]. Godel et al. [15]

analyzed the effect of propagation delays on Bitcoin using a

Markov process. Garay et al. [14] investigated Bitcoin in the

synchronous communication setting, however, this setting is

often considered too restrictive [5]. Pass et al. extended the

analysis for when the bound on message delivery is unknown

and showed in their model that the difficulty of Bitcoin’s

crypto-difficulty has to be adapted depending on the bound

on the communication delays [27]. This series of work reveal

an important limitation of Bitcoin: delaying propagation of

blocks can waste the computational effort of correct nodes by

letting them mine blocks unnecessarily at the same index of

the chain. In this case, the attacker does not need more mining

power than the correct miners, but simply needs to expand its

local blockchain faster than the growth of the longest branch

of the correct blockchain.

Ethereum proposed the GHOST protocol to cope with this

issue [29]. The idea is simply to account for the blocks

proposed by correct miners in the multiple branches of the

correct blockchain to select the main branch. As a result,

growing a branch the fastest is not sufficient for an attacker

of Ethereum to be able to double spend. Even though the

propagation strategy of Ethereum differs from the pull strategy

of Bitcoin, some network attacks against Bitcoin could affect

Ethereum. In the Eclipse attack [17] the attacker forces the

victim to connect to 8 of its malicious identities. The Ethereum

adaptation would require to forge 3× more identities and force

as many connections as the default number of clients is 25.

Apostolaki et al. [1] proposed a BGP hijacking attack and

showed that the number of Internet prefixes that need to be

hijacked for the attack to succeed depends on the distribution

of the mining power. BGP-hijacking typically requires the

control of network operators but is independent from Bitcoin

and could potentially be exploited to delay network messages

and execute a Balance attack in Ethereum.

The R3 consortium has been experimenting Ethereum since

more than half a year now and our discussion with the R3

consortium indicated that they did not investigate the depend-

ability of the GHOST consensus protocol and that they also

worked with Ripple, Axoni, Symbiont. Some work already

evoked the danger of using proof-of-work techniques in a con-

sortium context [16]. In particular, experiments demontrated

the impossibility of ordering even committed transactions in

an Ethereum private chain without exploring the impact of

the network delay [24]. As a private blockchain involves

typically a known and smaller number of participants than

a public blockchain, it is also well-known [8], [31] that many

Byzantine Fault Tolerance (BFT) solutions [7], [26], [20],

[6] could be used instead. At the time of writing, R3 has

just released Corda [4] as a proposed solution for private

chains. Corda does not yet recommend a particular consensus

protocol but mentions BFT and favors modularity by allowing

to plug any consensus protocol instead [4]. Our work confirms

that proof-of-work, besides being unnecessary for consortium

private chain when the set of participants is known, is not

recommended especially for dependability reasons.

IX. CONCLUSION

In this paper, we show how main proof-of-work blockchain

protocols can be badly suited for consortium blockchains. To

this end, we propose the Balance attack a new attack that

combines mining power with communication delay to affect

prominent proof-of-work blockchain protocols like Ethereum

and Bitcoin. This attack simply consists of convincing correct

nodes to disregard particular proposed series of blocks to lead

to a double spending. We analyzed the tradeoff inherent to

Ethereum between communication delay and mining power,

hence complementing previous observations made on Bitcoin.

There are several ways to extend this work. First, the context

is highly dependent on medium-scale settings where statistics

about all participants can be easily collected. It would be

interesting to extend these results when the mining power of

participants is unknown. Second, the success of the Balance

attack despite a low mining power requires communication

delay between communication subgraphs. The next step is to

compare denial-of-service and man-in-the-middle attacks and

evaluate their effectiveness in introducing this delay.
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APPENDIX

A. Analysis for the general case

As we show below, if the attacker can delay communications

for long enough between k subgraphs of the communication

graph where k ≥ 2 then the attacker does not need a large

portion ρ of the mining power for the blockchain system to

be block oblivious. We consider an attacker that can delay

messages of the communication graph G between k subgraphs

G1, ..., Gk, each graph owning the same portion 1−ρ
k

of the

total mining power.

Similarly to Section IV, we consider that for 0 < i ≤ k,

each of the subgraph Gi mine blocks during delay τ . During

that time, each Gi performs a series of n = 1−ρ
k

tτ independent

and identically distributed Bernoulli trials that returns one in

case of success with probability p = 1
d

and 0 otherwise. Let the

sum of these outcomes be the random variable Xi (0 < i ≤ k)

with a binomial distribution and mean:

µc = np =
(1− ρ)tτ

kd
. (4)

Similarly, the mean of the number of blocks mined by the

malicious miner during time τ is

µm =
ρtτ

d
. (5)

We are interested in measuring the probability that an

attacker can select a candidate blockchain among the existing

ones and make it adopted by the system. Note that this is easier

than rewriting the history with the attacker personal blocks but

is sufficient to double spend by simply making sure the initial

transaction that spend the coins is only part of blockchains

candidate that will be discarded.

The attack relies on minimizing the difference in mined

blocks between any pair of communication subgraphs. Hence,

let us denote ∆ the difference of the number of blocks mined

on any two subgraphs:

∆ = max
∀0<i,j≤k

(|Xi −Xj |).

To this end, we bound the difference between the number of

blocks mined in two subgraphs so that the attacker can mine

more than the difference.

Fact 6 (Bernoulli’s inequality). 1 + nt ≤ (1 + t)
n

for n ≥ 1
and t ≥ −1.

Theorem 7. An attacker decomposing the communication

graph into k subgraphs upper-bounds their difference ∆ in

mined blocks by 2δµc with probability Pr[∆ < 2δµc] >

1− 2ke−
δ2

3 µc where δ > 0.
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Proof: This difference is less than 2δµc with probability

larger than the probability that all random variables are within

a ±δ multiplying factor from the mean, we have:

Pr[∆ < 2δµc] ≥ Πk
i=1 Pr [|Xi − µc| < δµc] . (6)

The probability that the numbers of blocks mined by each

subgraph are within a ±δ factor from their mean, is bound for

0 < δ < 1 and 0 < i ≤ k by Chernoff bounds [22]:
{

Pr [Xi ≥ (1 + δ)µc] ≤ e−
δ2

3 µc ,

Pr [Xi ≤ (1− δ)µc] ≤ e−
δ2

2 µc .

Thus, we have

Pr[|Xi − µc| ≥ δµc] ≤ 2e−
δ2

3 µc ,

Pr[|Xi − µc| < δµc] > 1− 2e−
δ2

3 µc .

and with Eq. 6 we obtain:

Pr[∆ < 2δµc] >
(

1− 2e−
δ2

3 µc

)k

. (7)

As µc ≥ 0, we have that:

−
δ2

3
µc ≤ 0

−e
−δ2

3 µc ≥ −1

and as k ≥ 1 we can apply the Bernoulli inequality to Eq. 7.

Hence, Eq. 7 becomes:

Pr[∆ < 2δµc] > 1− 2ke−
δ2

3 µc . (8)

The next theorem bounds the number of blocks the attacker

needs to mine to force the system to adopt the candidate

blockchain of its choice.

Theorem 8. If the attacker delays the links of E0 while the

miners on each of the k subgraphs mine for

τ ≥
3kd log( 2k

ε
)

δ2(1− ρ)t

seconds, then with probability 1−ε the difference between the

number of blocks mined on the two subgraphs is lower than
2δ(1−ρ)tτ

kd
.

Proof: The proof relies on upper bounding 2ke−
δ2

3 µc by

ε:

2ke−
δ2

3 µc ≤ ε,

µc ≥
3 log( 2k

ε
)

δ2
.

By replacing µc by the expression of Eq. 4, we obtain:

τ ≥
3kd log( 2k

ε
)

δ2(1− ρ)t
.

Let us now bound the probability that the number of blocks

mined on k subgraphs is always lower than the expectation of

the number of blocks mined by the malicious node.

Theorem 9. If δ = µm−1
2µc

then

Pr[∆ < µm] > 1− 2ke−
(µm−1)2

12µc .

Proof: The proof follows from replacing δ by µm−1
2µc

in

Eq. 8.
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